
 Development of OpenModelica interface for external control

 Kunihiro Matsuzawa
1)

 Hajime Sato
1)

 Takashi Yamashita
1)

 1) AdvanceSoft Corporation
 4-3 Kanda Sugugadai, Chiyoda, Tokyo, 101-0062, Japan (E-mail: kmatsu@advancesof.jp)

KEY WORDS:vehicle development, computer aided engineering, design optimization, tool, machine learning [B2]

OpenModelica is an open source modeling and simulation
environment for the Modelica language suitable for 1DCAE and
model-based development.
OpenModelica is a simple modeling and simulation environment,

but without the advanced features of commercial MBD tools.
By developing a Python interface library that can control

OpenModelica from the outside and combining it with other
software, we believe that we can acquire advanced new functions.
In order to control OpenModelica externally, we have developed a

new Pyhton interface library OpenModelicaCompilerForPython.
It allows the OpenModelica process to be called through an

interface library to externally control the simulation, store the
simulation results externally, and read / write model parameters.

Introducing a case study by Bayesian optimization.

We externally controlled OpenModeica from the Bayesian
optimization library BayesianOptimization, which can be used free
of charge with open source software, and verified it.
For the spring-mass damper model explained in Fig. 1, a search

was performed by Bayesian optimization with the spring constant
and damper constant as unknown variables (objective variables).
With the correct values of the spring constant and damper

constant, which are the objective variables, set to 2.0 [N], 100 cases
of "time change of mass position" data were generated by adding
random noise to the amplitude of the external force. The objective
function was set to minimize the sum of squares of the residuals
between the result data at each search point of Bayesian

optimization and the data of 100 cases.
Fig. 2 shows the results of Bayesian optimization. After the

number of searches is about 70, the value close to the correct
answer value is reached. By the number of searches 258 times, the
spring constant 1.98593 (correct answer value 2.0) [N / m] and the
damper constant 1.974402 (correct answer value 2.0) [N / m] were
obtained.

Introducing a case study by reinforcement learning.

We externally controlled OpenModeica from the reinforcement
learning frameworks OpenAI Baselines and OpenAI Gym, which

can be used free of charge with open source software, and verified
it.
Fig. 3 shows the results of reinforcement learning. In the figure on

the left, up to about 3000 learning times, the number of trials is
large and the rewards and achievements are small, but as the
number of learning progresses, the number of trials will be reduced to one or two, and the reward will also be. It has been shown that
more will be available. The figure on the right shows the distribution of the spring constant and damper constant selected in the
verification when learning was performed 1000 times, 5000 times, and 15000 times. There are more plots as the number of trials
increases from the one with less learning. In addition, it can be seen that the spread of distribution narrows as learning increases.

By using this Python external control interface, it becomes possible to combine it with other software, and it becomes a highly versatile

framework that can acquire advanced enhancements. It is expected to be used in the future, such as improving the efficiency of design

and analysis.

Fig.1 Simple spring-mass-damper model

Fig.2 Result of Bayesian optimization

Fig.3 Result of reinforcement learning

文献番号講演番号

2022 JSAE Annual Congress (Spring) - Summarized Paper
Issued on May 20, 2022

172 20225172

