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Suspension is an important chassis part which is vital to ride comfort. There are two types of suspension systems: conventional and 

semi-active suspension. Semi-active suspensions can control damping force and provide a higher level of ride comfort. However, it 

requires dedicated suspension sensors on all four wheels, which increases cost and tuning man-hours. Therefore, development of sensor 

value prediction technology based on CAN data has been promoting to achieve low cost sensorless semi-active suspension system. Fig.1 
shows an overview of low cost Sensorless Semi-active Suspension system. This paper describes the suspension control method to 

replace the sensor function to the neural network by getting data from driving test of the vehicle with the acceleration sensor as a teacher 

data, and training.  

 
The target of this estimation technique, sprung mass 

speed and piston speed, are time-series data that would 

conventionally be obtained from on-vehicle sensors. 

Therefore, we adopted a recurrent neural network RNN, 

which is considered suitable for predicting time-series 
data. 

From the perspective of improving accuracy during 

training and validation with RNN, wheel speed, 

longitudinal acceleration, lateral acceleration, yaw 

rate, suspension control value and steering angle 
transmitted on the CAN were selected as input data 

used to estimate the sprung mass speed and piston 

speed. 

Optimization of the RNN configuration, specifically with 
respect to the window width corresponding to the number 

of input layer elements, and the number of hidden layer 

elements, was performed. As a result, from the viewpoint 

of learning/estimation accuracy and circuit size, the 
window width was set to 0.5sec (= number of input layer 

elements 25/physical value) and the number of hidden 

layer elements to 50. Table5 provides a summary of the 

learning and validataion accuracy after optimization of 

RNN structure. The worst-case learning and estimation 
MAE for each of the four wheels in this configuration was 

0.026m/sec, belo the target of 0.05m/sec. We also checked 

the output waveform of the RNN. Fig.8 shows an example 

of RNN output and sensor data. It was confirmed that the 

trend of the sensor output waveform was generally 
captured. 

Based on the above, we believe that a sensorless semi-

active suspension that replaces the sensor function with 

a neural network can be realized. 

Fig.1 Overview of low cost Sensorless Semi-active Suspension system 

 

Table5 Summary of learning and validation accuracy after optimization 

 

Fig.8 RNN output and sensor data on Undulation track 

 

Target Wheel 

Position 

Learning MAE Validation 

MAE 

Piston speed FL 0.019m/sec 0.021m/sec 

FR 0.016m/sec 0.019m/sec 

RL 0.013m/sec 0.015m/sec 

RR 0.015m/sec 0.017m/sec 

Sprung mass 

speed  

FL 0.023m/sec 0.025m/sec 

FR 0.020m/sec 0.023m/sec 

RL 0.021m/sec 0.023m/sec 

RR 0.023m/sec 0.026m/sec 
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